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!5 Motivation

« Some previous studies - Weighardt (ZWB, 1900,1946),
Lucas et al. (NASA, TN D-1988, 1963), Goldstein
(Advances in Heat Transfer, 1971), Aupoix et al. (AIAA,
36, 1998) & Konopka et al. (AIAA 2010-6792)

* More experimental data is needed to adequately validate
CFD codes for supersonic film cooling

— E.g., most studies do not provide flow profiles, with no study
providing minimally-intrusive flow profiles

* RANS and LES techniques should be further tested to
assess performance for film cooling flows



Jé‘ Objective

« Develop a detailed understanding of film cooling fluid
dynamics so that predictive CFD approaches can be
developed

— Generate a database of measurements in ‘J-2X’ relevant model
problems*** that can be used for CFD validation

— Thorough assessment of RANS (using Loci-CHEM) and LES
(using OpenFOAM)

***Model problems
— Film cooling over a flat plate at constant pressure
— Film cooling over a flat plate with a pressure gradient



Experimental heat flux



é‘ Inverse modeling

* Inverse modeling - measure temperature inside the solid
and reconstruct unknown wall heat flux ,



Jé‘ Heat flux determination procedure

* Divide the measured temperature data into several
sections

« Tune heat flux at the surface for reproducing the
measured temperature inside the solid

— Done using the bisection method with a 1D finite difference
based conduction solver
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Reynolds Averaged Navier
Stokes (RANS) simulations:

LocI-CHEM



)é‘ RANS: boundary conditions & mesh
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/X RANS vs experiments: schlieren

Experiments RANS
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/X RANS vs experiments: schlieren
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)5- RANS vs experiments: lower wall heat flux
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RANS vs experiments: upper wall heat flux
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!5- Discrepancies - why?

« Possible reasons and solutions
— Limitations of RANS models e.q., difficulty in handling variable
density flows
« LES

— Fixed temperature BC for heated walls corap
« Conjugate Heat Transfer (CHT) How

) Flow

— Relatively new inverse modeling code
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Large Eddy Simulations
(LES): OpenFOAM



« (Getting very popular in
— Academia &

 Why?

Industry

http://openfoam.com/

Free

Open source

Easy to extend/develop
Several models for e.g., turbulence, combustion
Unstructured meshes

Scalability up to 1000s of CPUs
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Jé‘ LES: inflow schematic & sponge layer
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Jé‘ Coarse LES: wall heat flux contours
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)é . LES: domain size & resolution
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)é . LESvs experiments: lower wall heat flux

Heat flux [kW/m?]

e Experiment
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,)é‘ Concluding remarks

. RANS (Loci-CHEM)

— Flow structures in reasonable agreement with experimental data

— Comparison with experimental heat flux profiles not impressive
» Disagreement worse on the upper wall

« LES (OpenFOAM)
— Providing high resolution insight into the film cooling dynamics
— Preliminary LES shows improvement over RANS

— Higher resolution simulations expected to provide more accurate
results
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)é‘ Future work

« Heat flux determination (or inverse modeling) procedure
— Check sensitivity to different parameters e.g., number of divisions

* Reynolds Averaged Navier Stokes (RANS) simulations
— Understand the source of discrepancies in heat flux profiles
— Conjugate heat transfer

* Large Eddy Simulations (LES)
— Conduct higher resolution simulations
— Larger span size
— Resolve the upper wall
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Thank you; questions?



Back up slides



!6‘ LES: domain

e Can not do LES of the full domain (high computational
COSt)

o Reducedgomain needed K (M2/s2)

S 2|F|’?||\|||\!|’??\||||\|TF|’?|
. =

~
S

« But inflow fluctuations become important with reduced
domain due to relatively high turbulent kinetic energy
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!5 LES: inflow (Synthetic Eddy Method)

« Jarrin et al. (IJHFF, 27, 2006)

* Velocity signal — sum of synthetic eddies with random
position & intensity

« Eddies convected in a virtual streamwise periodic domain
around the inlet boundary

e Synthetic eddy characteristics determined e.g., from a
RANS solution
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_ 5 LES: inflow validation

« Synthetic Eddy Method (SEM)
— Inlet signal evolves into a natural turbulent signal in roughly 15 x/d

« Random noise at the inlet
— Inflow signal is damped by the solver and flow re-laminarizes

« Consistent with Jarrin et al. (IJHFF, 27, 2006)
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B oogeme

K% LES: sponge layer

To avoid reflections from the outlet a sponge layer (grey)
was used "

Flow fluctuations are damped Iin the sponge layer by
source terms before it leaves the domain
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Tested on the shock-vorticity/entropy wave interaction
problem from Johnsen et al. (JCP, 229, 2010)




